THE ENERGY EFFICIENCY
DIRECTIVE, ECO-LABELLING
AND MINIMUM PERFORMANCE
STANDARDS FOR DATA
CENTRES: UPDATE ON
DEVELOPMENTS

Emma Fryer, Public Policy Director Europe

efryer@cyrusone.com





## OUTLINE

- **EED Recap...and challenges for operators**
- Labelling Update... and challenges for operators
- MPS Proposals ....and challenges for operators



# EED – REQUIREMENTS #1

Many provisions of EED targeted specifically at data centres

#### Annex I: Information to be Collected and Communicated

- 1 Information on the Data Centre
  - Data centre nameOwner and operator details
  - Location (Local Administrative Unit Code)
  - Type of data centre (enterprise, colocation, co-hosting)
  - Year and month of entry into operation
- 2 Information on Domain Control by the Reporting Entity
  - Control over physical building
  - Control over mechanical & electrical plant
  - Control over data floor
  - Control over racks
  - Control over IT equipment
  - Control over operating system/virtualisation layer
  - Control over software
  - Control over business process
  - Control over all domains
- Information on the Operation of the Data Centre
  - Electrical infrastructure redundancy level
  - Cooling infrastructure redundancy level
  - Total number of modular capacity steps or separately provisioned halls
  - Total number of racks

#### Annex II: KPIs to be Monitored, Measured, and Communicated

- **Energy and Sustainability Indicators** 
  - Installed IT power demand
  - Data centre total floor area
  - Data centre computer room floor area
  - Total energy consumption
  - Total consumption of IT equipment
  - Electrical grid functions
  - Average battery capacity & Battery time
  - Total water input
  - Total potable water input
  - Waste heat reused
  - Average waste heat temperature
- 2 ICT Capacity Indicators
  - ICT capacity for servers
  - ICT capacity for storage equipment
- 3 Data Traffic Indicators
  - Incoming traffic bandwidth
  - Outgoing traffic bandwidth
  - Incoming data traffic
  - Outgoing data traffic

- Rated cooling capacity
- Type of refrigerant used
- Cooling degree days
- Total renewable energy consumption
- Total renewable energy consumption from Guarantees of Origin
- Total renewable energy consumption from PPAs
- Total renewable energy consumption from on-site renewables



# EED – REQUIREMENTS #2

### Annex III: Data Centre Sustainability Indicators and Calculation Methodologies

- Power Usage Effectiveness (PUE)
- Water Usage Effectiveness (WUE)
- Energy Reuse Factor (ERF)
- Renewable Energy Factor (REF)

### Annex IV: Publicly Available Information in the European Database



#### At Member State Level

- Number of reporting data centres
- Distribution of reporting data centres by size categories
- Average PUE, WUE, ERF, and REF for all reporting data centres, per type, and per size category



#### **At Union Level**

- Number of reporting data centres
- Distribution of reporting data centres by size categories
- Average PUE, WUE, ERF, and REF for all reporting data centres, per type, and per size category



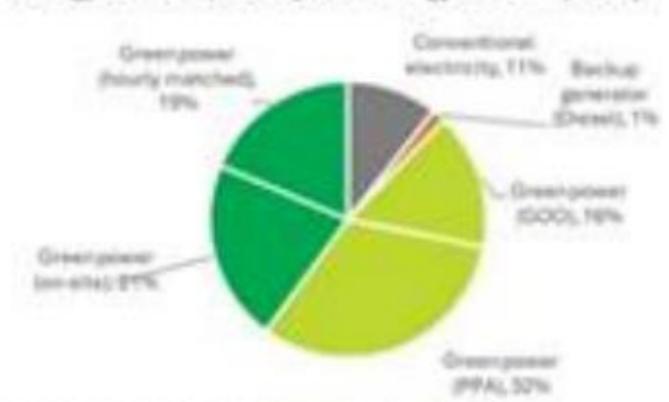
### EED RECAST — IMPLICATIONS

- Hastily drafted, problematic elements and internal contradictions.
- 2 Core challenges:
  - Scope set incorrectly
  - Required information unavailable to operators
  - Metrics not appropriate
  - Patchy data (quality and coverage)
- Shortcomings "baked in" to dependent measures



### Datacentre: [Data centre name] Operator: [Owner and operator of the data centre]

Type: [Type of data centre]


Start of operation: [Year and month of entry into operation] Reference Year: [Year, on which the data below refers to]

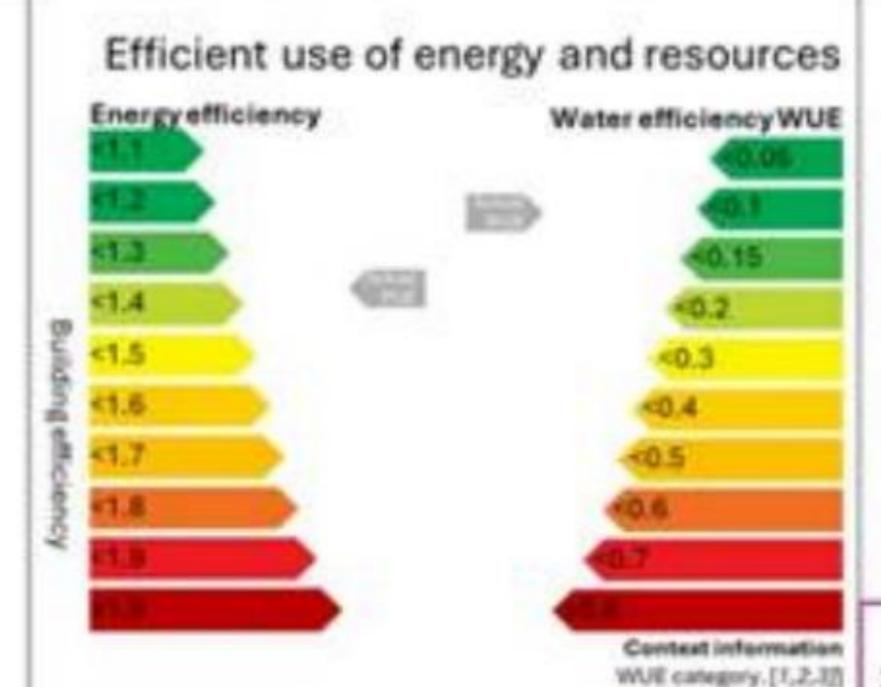
Size: [rated IT power kW/MW]

Location: [Location of DC; LAU level]

### Origin of energy and resources

Total energy consumption: [Total energy consumption]




Renewable Energy Factor (REF): [no unit]

#### Carbon emissions

Average carbon emissions of power (market based): [g/kWh] Total carbon footprint of power: [t/a]

#### Impact on regional water situation

Regional water depletion\*: [now + projected 2050 in %] Type of Water: [Potable/non-potable; share if both are used]



#### Data centre performance

Perforo Compute performance of data centre: [aggregated]

Total Processing Performance (TPP) of data centre accelerators1: [aggregated value] (alternatively FLOPS)

C<sub>true</sub>: [Appregated storage capacity in E8]

### Other sustainability actions and data centre circularity measures



Heat-reuse-ready and offering heat? [YES/NO]



Ratio of heat reused in reference year ERF: [%]

voluntary

Other heat reuse actions (excluded in ERF)



PUE category: [1, 2, 3]

Local cooling degree days\*: [CDOs\*Cd]

Availability/redundancy Level: (Availability Class")

Grid functions



Brownfield approach (>75% of area used before)



Hardware circularity/ e-waste program




Water stewardship programme



Low GWP refrigerant



Liquid cooling>75%



\*further features

## LABELLING SCHEME: WHAT'S GOOD?

- Separation of sustainable sourcing (left) from operational performance metrics (centre) from other sustainability credentials (right)
- Separation of obligatory from optional
- Factual basis of information, which has not been subject to invisible algorithms, or tinkered with
- Close adherence to EED reporting requirements which reduces compliance burden
- Visually transparent and intuitive



### LABELLING SCHEME: EXAMPLE ISSUES

- While the operational infrastructure metrics chosen (WUE and PUE) are correct, the ranges are wrong. WUE in particular will not distinguish efficient from inefficient dry cooling or efficient from inefficient wet cooling.
- Location based carbon will polarise views between countries who need data centre investment to drive their energy transition and countries who already have a decarbonised grid.
- Optional sustainability credentials should be open ended, not prescribed

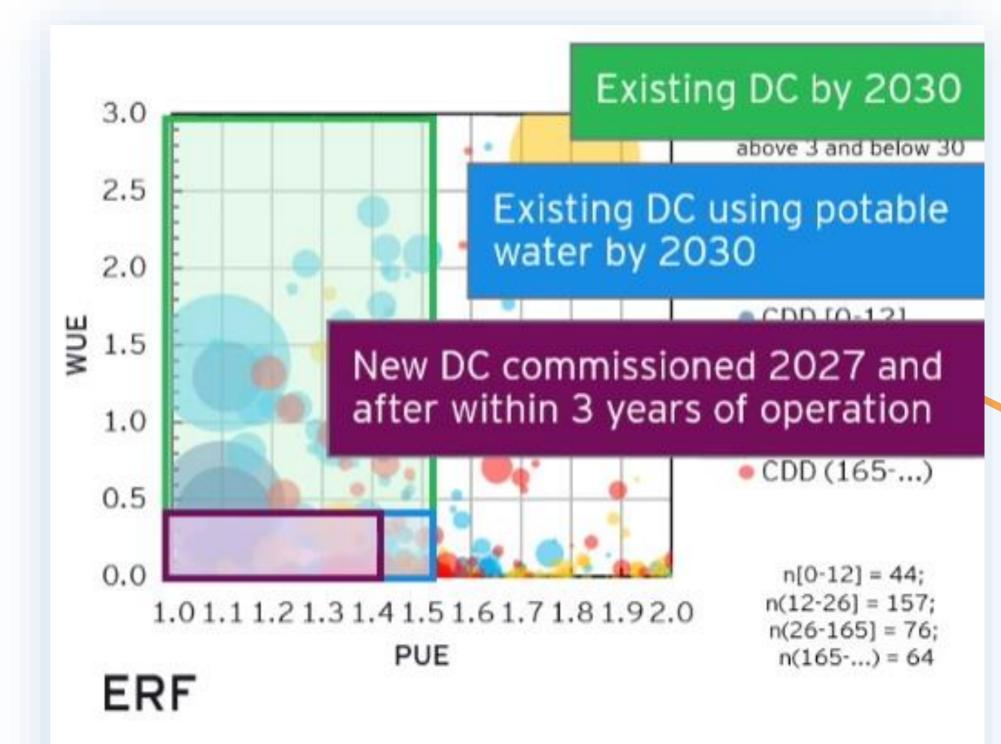


### MINIMUM PERFORMANCE STANDARD: MPS

Based on the reported data and considering the stakeholders' input, both obtained by 24. 04. 2025, we suggest considering the following MPS:

### **PUE**

- Operational PUE < 1.5 for existing DC by 2030</li>
- Design PUE < 1.3 for DC commissioned 2027 and later, operational PUE < 1.4 achieved within 3 years of operation


### WUE

- WUE < 0.4 L/kWh (based on potable water) for all DC by 2030</li>
- WUE < 0.4 L/kWh (regardless of origin) for DC commissioned 2027 and after
- Further focus on WUE regardless of water source

### REF

- REF = 100% for all DC (regardless of origin) by 2030
- Further focus on the origin of renewable energy





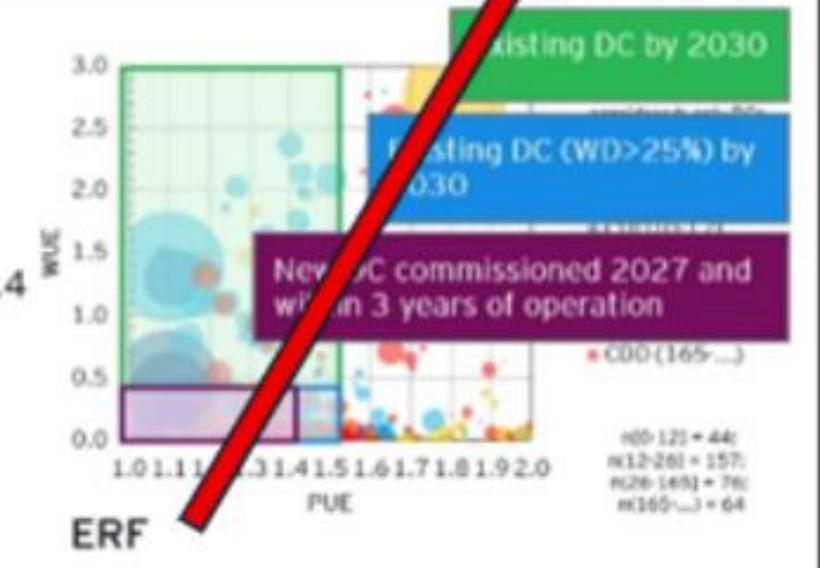
We do not believe that mandating a EUwide criterion is feasible - we propose for it to be assessed locally.

For all MPS, we encourage policy makers to introduce stricter regulations on national level where deemed necessary and feasible.

Reported data: We cannot understand how these figures were informed by the reported data since they would exclude more than 50% of the sector from the market.

PUE: While PUE should be included in MPS the PUE values need to be on a sliding scale to reflect external factors such as average temperature. The Pact's PUE targets are carefully structured to allow a level playing field. This approach could drive activity to where the MPS can be achieved with least effort.

ERF: We agree that ERF is not appropriate for inclusion in MPS


Based on the reported data and considering the stakeholders' input, both obtain a by 24. 04. 2025, the following MPS were suggested:

### PUE

- Operational PUE < 1.5 for existing DC by 2030</li>
- Design PUE < 1.3 for DC commissioned 2027 and later, operational PUE < 1.4 achieved within 3 years of operation

#### WUE

WUE < 0.4 m³/MWh for DCs in areas with water depletion > 25% by 2030 WUE < 0.4 m³/MWh for DCs in areas with water depletion > 25% commissioned 2027 and after



#### WUE

WUE < 0.4 m³/MWh for DCs in areas with water depletion > 25% by 2030

WUE < 0.4 m³/MWh for DCs in areas with water depletion > 25% commissioned 2027 and after

Further encourage using non-potable water and efficiency

Only Category 2 reporting from 2030

### REF

REF = 100% for all DC (regardless of origin) by 2030

Further focus on the origin of renewable energy (encourage hourly matching)



N(12-26) + 157: m265-\_\_) = 64

ERF

We do not believe that mandating a EUwide criterion is feasible - we propose for it to be assessed locally.

MPS, we encourage policy makers introduce stricter regulations on national level, where deemed necessary and feasible.

WUE: We agree that WUE should form part of MPS but proposals appear to be associating minimal or zero water use with optimal sustainability. This is not always the case and there is a risk of regulating out widely used technologies which could lead to perverse outcomes.

We do not understand the choice of Category 2 reporting from 2030 REF: We agree that REF should be included in MPS. However the MPS should accept GOOs, PPAs and onsite generation equally. Encouraging hourly matching should not be the target of MPS. Hourly matching could be a bonus voluntary criterion however.

Nation States should not be encouraged to introduce stricter regulations: firstly because this reduces harmonisation and secondly because this is not the task of MPS which are purely to remove facilities that are unfit for purpose from the market.



### MPS: ISSUES IN SUMMARY

- Chosen metrics are sensible but not the numbers....
- PUE aspirational no CDD allowances
- **WUE** irrespective of location or water scarcity
- **Encouragement for MS to raise ambition**

### However....

**ERF not deemed relevant for EU wide policy** 

Core issue: Conflation of policy tools



# ....WHAT DO I MEAN BY CONFLATION OF POLICY TOOLS?

Policy tools are in place to correct market failure and deliver measurable outcomes.

- EED: Data gathering to improve transparency and inform future policy
- Rating scheme: to drive sustainability performance through competition for best in class
- MPS: to remove the worst in class those facilities that are unfit for purpose from the market
- PQC: aspirational standards to ensure only best in class can bid to provide future large scale capacity

  CyrusOne

### USEFUL LINKS

### **CNDCP Ratings Working Group outputs**

- A Rating Scheme for Data Centres: Technical Discussion Paper: <a href="https://www.climateneutraldatacentre.net/wp-content/uploads/2025/04/CNDCP-A-Rating-Scheme-for-Data-Centres.pdf">https://www.climateneutraldatacentre.net/wp-content/uploads/2025/04/CNDCP-A-Rating-Scheme-for-Data-Centres.pdf</a>
- CNDCP Ratings WG Feedback on proposed label: <a href="https://europainsightssprl.eu.teamwork.com/app/files/3911054">https://europainsightssprl.eu.teamwork.com/app/files/3911054</a>
- CNDCP Ratings WG: Addendum to feedback on proposed label: <a href="https://europainsightssprl.eu.teamwork.com/app/files/3919713">https://europainsightssprl.eu.teamwork.com/app/files/3919713</a>
- MPS for Data Centres: Observations from the Climate Neutral Data Centre Pact: <a href="https://www.climateneutraldatacentre.net/wp-content/uploads/2025/07/MPS-for-Data-Centres-Observations-from-the-Climate-Neutral-Data-Centre-Pact website1.pdf">https://www.climateneutraldatacentre.net/wp-content/uploads/2025/07/MPS-for-Data-Centres-Observations-from-the-Climate-Neutral-Data-Centre-Pact website1.pdf</a>

International Energy Agency: Energy and AI (see page 14 for the comparison to air conditioning)

https://iea.blob.core.windows.net/assets/601eaec9-ba91-4623-819b-4ded331ec9e8/EnergyandAl.pdf

CyrusOne Listening to Communities report: <a href="https://www.cyrusone.com/commitments/listening-to-communities">https://www.cyrusone.com/commitments/listening-to-communities</a>

Referencing standards in legislation, see conversation piece here: <a href="https://www.datacenterdynamics.com/en/opinions/data-center-cooling-does-standardization-threaten-innovation/">https://www.datacenterdynamics.com/en/opinions/data-center-cooling-does-standardization-threaten-innovation/</a>



